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NOTATION

1, 2, 3 Body axis system coincident with principal inertial
axes

u, v, v Wonrotating reference axes

u', v', w' Control axis system pitched by angle uo and rolled
by angle vo relative to u, v, w

Uo, vo (See u', v', w')

u Pitch angle displacement of axis 3

v Roll angle displacement of axis 3

Ut, Vt Pitch, roll angle displacement of the thrust vector

i1 Feather angle measured positive down from u'-v'
plane to axis 2

82 Teeter angle measured positive down from u'-v'
plane to axis I

81, 82 Feather and teeter angles measured from the u, v
plane

1, S12, S3 Dimensional angular velocities around axes 1, 2, 3

w1, w2 , w3  Nondimensional angular velocities around axes
1, 2, 3 , 01/n3, n2/03, 1

Nondimensional time equals azimuth angle measured
frem u axis to axis I

C) Derivative with respect to t

11, 12, 13 Moments of inertia about axes 1, 2, 3

Angle by which damping moment vector (i.e.,
moment proportional to -w2) lags axis 2

E2 Angle by which feedback moment vector (i.e.,
moment proportional to -K62) lags axis 2

E3 Angle by which forcing function moment vector
lags axis 2

N1, N2  Nondimensional moments •bout ales 1, 2 (dimensional
moments divided by 'i1 3 ', Ij 3Z)
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C Rotor blade chord

R Rotor radius

A0, Aj, A2 , A3  Coefficients of the stability quartic

_ Nk 3-1 12
A Feather stability coefficient - - B- I1 + c1 B

aN2 0.35npR5
BTeeter damping coefficient = - --

aN2 2 ______

D Teeter stability coefficient - 2 -
Saw 1  1 2

K Teeter feedback coefficient . .2
• 2 .

K1 K Feather feedback coefficient - - .1-• iC c2 j:)

M Nondimensional teeter moment forcing function

EM Nondimensional feather moment forcing function (E C3

Oa Pitch offset angle from w' axis to mean position
of axis 3

b Roll offset angle from w' axis to mean position
of axis 3

ý uPitch lag angle from u'~-v' plane to plane containing
instantaneous motion of axis I

0 v Roll offset angle from u'-v' plane to plane containing
instantaneous motion of axis 1

Nondimensional pitch rate of the control axis
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ABSTRACT

A rigid two-bladed helicopter rotor mounted with no mechanical
constraint of its teetering and feathering motions is analyzed with
regard to the stability and controllability achievable with a simple
feedback moment linearly proportional to teeter angle. Subject to
confirmation by a detailed design study, it is tentatively concluded
that the level of stability and control practically achievable with
such a system would be adequate for tip-jet-driven very-heavy-lift
helicopters. It is further concluded that the outlook for relatively
low vibration levels is favorable.

INTRODUCTION

There is generally conceded to be an upper limit on helicopter disk loading

(for reasons of downwash effects on personnel, objects, and ground surface in

the landing/takeoff area and damage to the helicopter from re-circulated debris)

and on rotor tip speed (for reasons of compressibility effects on rotor aero-

dynamics). If disk loading and tip speed are held fixed, the following propor-

tional relationships with rotor radius R apply:

Maximum takeoff weight R2

Rotor horsepower -R2

Rotor rpm I/R

Rotor torque R3

With torque increasing so much faster than total helicopter weight, the weights

of the main rotor transmission and the anti-torque system tend to become excessive

when one attempts to design conventional simple helicopters in the very-heavy-

lift range.

The tip-jet-driven helicopter is a possible solution that has been known

for many years. Though less efficient in energy terms when considering the main

rotor alone, the elimination of the transmission and drastic reduction of anti-

torque system requirements may lead to a significant overall advantage.



Tip-jet-driven rotors are constrained, however, to a small number of rotor

blades (preferably two, at most three) to maintain an adequate ratio of blade

cross-section area to blade planform area for efficient ducting of the jet gases

through the blades to the tip Jet nozzles. The control of a very large two-

bladed rotor through conventional mechanical cyclic pitch becomes a challenging

problem. Control actuation loads can become very large, and reacting these loads

on the fuselage can entail severe vibrations, especially when the helicopter

flies lightly loaded and fuselage mass and inertias are relatively low. These

cc.nsiderations have stimulated interest in the possibility of a fully gimballed

rotor; that is, one which is mechanically unconstrained in both teetering and

feathering motion. Control moments might be applied to such a rotor by circu-

lation control on the blades using a portion of the jet-drive gases, or by trailing

edge flaps with actuation forces reacted within the blade itself.

Previous analyses* of a rigid two-bladed fully gimballed helicopter rotor

showed that with appropriate mass balancing such a rotor can be stable at zero

and low advance ratios in the sense that transient disturbances will damp to zero,

and responses to harmonic excitation will damp to a steady state. (If the harmonic

excitatiou includes a one-per-rev component of feathering moment not coincident

with the rotor damping axis, the steady state response will include a progressive

pr.cession of the axis of rotation.)

A more desirable level of stability is one in which the rotor would return

ro a preselected orientation with the fuselage after a transient disturbance and

in which small faathering moment excitations, even if not precisely coincident

with the damping axis, would not produce progressive precession. The purpose of

* As reported by H.R. Chaplin (DTNSRDC/TM-16-80/16, "Some Dynamic Properties

of a Rigid Two-Bladed Fully Gimballed Tip Jet Helicopter Rotor with Circulation
Control," Aug 1980).
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this effort Is to examine the effectiveness of a feedback moment proportional

to teeter angle (as measured from a plane fixed to the fuselage) as a means of

achieving this type of stability.

EQUATIONS

The Euler equations* are written in nondimensional form as:

-j - -Aw2 - K1K02 + E.(t) (1)

- 2 - -Bw2 + DwI - K82 + M(t) (2)

w3 - constant

These equations are equivalent to the equations in the previous work, but the

nomenclature differs. As written here, M is the nondimensional disturbing aero-

dynamic moment due to guats or non-zero advance ratio, and -K0 2 is the nondimen-

sional feedback moment. (Coefficients are defined in the Notation.)

A nonrotating axis system u, v, w coinciding with the principal axis system

1, 2, 3 at time zero is defined. Pitch, roll velocity of axis 3 is given for

small-amplitude motions by

w w2 cos t + wi sin t (3)

= -WI 1 cos t + w2 sin t (4)

Feather and teeter angles relative to the u-v plane are given by

01 - v co t - u sin t (5)

62 a u cos t + v sin t (6)

Symon, K.R., "Mechanics," Second Edition, Addison-Wesley Publishing Co., Inc.,
Reading, MASS (May 1961), p. 451.
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Differentiating these equsttions and combining with Eqs. (3) and (4) gives

0 W1 ~ 2

e2a w2 + el

02 - a2 - w1 - 82 (7)

STABILITY

Equations (1), (2), and (7) now form a set of three linear differential

equations relating the three variables w], w2, e2- Rearranging, these equations

be come

(62 + 82) + w1 - -2 - 0 (7)

K1 K02 + W1 + Aw2 - EM (0)

K082 - D + (w2 + Bw2 K (2)

This is a fourth-order linear system that responds to the excitation M(t) and

has additional solutions of the form e where the Xi's are roots of the

determinant

X•2 + 1 1 ,

KIK XA

K -D X + B

or

A4 )+A 3X 
3 + A2X 

2 + AIX + AO 0 (8)

4



where

AO- A(D+K) - KIKB

Aj - B - KIK (1-D) (9)

A2 -In+ X+ AD

A3 - B

The well-known criteria for stability are:

1. All of the coefficients AO, Al, A2 , A3 must be positive; and (10)

2. The quantity a n AIA 2A3 - A1
2 _ A0A3 

2 imust also be positive. (11)

For practical rotor systems, the teeter stability coefficient Di - (13 Il1)/I2

* will always be very slightly less than unity. Insight i~to the stability criteria

is facilitated by examining the case of D -1:

A0- A(1I-,K) - K1KB

A2 -1 + K +I A when D 1 (12)

A3 B

o KB(_ + K13)

The teeter damping confficient B is necessarily positive on physical grounds

as long as the predominent lift curve slope of the rotor blades is positive.

* ~(Only for a very severely stalled rotor might this not be so.) It happens that.

a/B2 + A0 + I - A2; therefore, if a and A0 are positive, A2 is also positive

The staoility criteria thus reduce (for A positive, D - 1) to

* ~1. K1K B/A:9 1 + K to assure A0 is positive, and

2. KIK B/A --(I - I/A) to assure a is positive, as necessary and suffi~cient

cotiditions for stability when Di - 1.

Stability boundaries are illustrated in Figure 1. The region of primary in-

terest for a helicnpter rotor is the first quadrant with K1, K, and A all positive.
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STABLE WHEN

iA )K K K B/A < K+1

BOUNDARY FOR V> 0 IF A 1

2
0 K

Fig. 1. Stability boundaries when D - 1.
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It is interesting to note, however, that stability is possible with either K1 or

K or with both negative. (There is also a limited region of stability with A

negative; boundaries with A negative are not illustrated in Figure 1, but are

easy to draw. Since with no feedback system (i.e., with K-0) A must be positive

for stability, this region is analogous to the "fly-by-wire" airplane designed to

be unstable without its feedback system in operation.)

STEADY STATE RESPONSE TO FIRST-HARMONIC EXCITATION

In the previous study* it was found that the steady-state response of a rotor

without feedback to first-harmonic excitation was a two-per-rev circular wobble

of axis 3 superimposed on a steady progressive precession of axis 3. Since a

two-per-rev circular wobble of axis 3 corresponds to a pure harmonic motion of

teeter angle 82 and, hence, pure harmonic moments from the feedback terms (and

since we expect progressive precession ta be arrested by the feedback system), we

would expect a stationary two-per-rev wobble to be the primary steady-state

response of the rotor with feedback. The simplest approach is to assume such

a motion and solve for the excitation required to produce it. Suppose

u = I sin 2t + a
1

v - - - cos 2t + b

:: -si: t

w2 c cOs t

62 =a coo t + (b +-1) sin t
-2

61 -- a sin t + (b -- ) cos t (13)

* H.R. Chaplin, DTNSRDC/TM-16-80/16, Aug 1980.

Ir p il' Q II! I I j7



Substituting these quantities into Eqs. (1) and (2) yields

EB + (1-A)
K(K I-E)

b + E(D-1)
2 K(K -E)

K B + (1-A) K (D-1)
M cos t + sin t

K -E K E

Again, noting that D is nearly unity in practical cases, the case D 1 provides

simple insight.

a. The wobble circle is tangent to the u axis.

b. The Center of the circle is located at

u -a EB + (I-A) 14 with *1K(K B + 1(7-A)-) .

D1 (14)
v b - K I - E M -- ce t

v =b 14 +(-) M cos t .:
2 K iB + (17-A)-1

c. -2 - a cos t

d. 0
1 - 2b cos t -a sin t

e. The thrust vector, which is normal to the plane described by axis 1,

lies at uT - u - a, vT - 0, stationary. (Contrary to the interpretation

given in the previous work,* the wobble of axis 3 does not imply a

* wobbling thrust vector. The thrust vector is stationary under first-

harmonic steady-state excitation.)

*H.R. Chaplin, DTNSRDC/TM-16-80/16, Aug 1980.



BEHAVIOR NEAR STABILITY BOUNDARIES WITH NO EXCITATION

These conclusions are of course valid only for combinations of coefficients

satisfying the stability criteria derived earlier and, in fact, only if A0 and

a are both positive and finite. It can be noticed immediately that when G 4* 0 the

quantities a/H and b/H approach infinity; or tracking back through the derivation

of a/M and b/M, it can be seen that a stationary two-per-rev circular wobble (with

any center location and any radius) is a solution of Eqs. (1) and (2) if M - 0

and a = 0. (This observation remains valid when D j' 1.) The thrust vector

is stationary. The nature of the decay when a is very small will be discussed

later.

For the case A0 - 0, it is apparent from Eq. (8) that X1 - 0 (i.e., W1 , w2,

e2 constant) is a solution. From Eqs. (7) and (1), setting derivatives to zero,

it is seen that this solution has the properties

62= w - constant

K1K D + Kw2 A - 1 B - i•

81 w-2

This is a pure rotation about the w-axis. In the u-v plane it is a one-per-rev

circular wobble with the center at u-v-o and can have any arbitrary radius.A0
If A0 - 0, X 1 - Ai is a solution; that is,

Xt
2 constant x e I

KIK

9
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In the u-v plane this is a logarithmic spiral which approaches the origin as

t i, if Ao and Al are positive. The .thrust vector also describes a logarithmic

spiral.

STEADY MOTION OF CONTROL AXIS

Let us define a relative teeter angle by rewriting Eq. (6).

-2 - (u-uo) cos t + (v-v 0 ) sin t (6')

This is the angle between axis 1 and a new reference plane that is pitched and

rolled by angles us, vo relative to the u-v plane. Other things being equal,

any of the stead,--state motions in the u-v plane considered previously are simply

displaced by the amounts uo and vo, We will call axis w' normal to this plane and

coinciding with w when uo - vo - o the "control axis."

Let us consider a steady pitch-rate displacement of the control axis

* uO pt

Ideally, we might hope for a steady-state response u w pt + a, v - o with axis

3 tracking the control axis with constant lag angle -a; however, the preceding

studies lead us to expect that there will be a two-per-rev circular wobble and

a roll offset angle b superimposed on this ideal response. It is easily confirmed

.from Eqs. (3) and (4) that the motion

I sin t

w2 P cos t

is a pure translation u - Pt in the u-v plane; whereas the motions

w~=qsnt ] and

w2= -q cos t].

are stationary two-per-rev circular wobbles.

10



Taking

W 1 - p sin t + q sin t + r coo t

w2 - p cos t - q coB t + r sin t

and from Eqs. (3), (4), (5), and (6)

62 - (b-qi2) sin t + (a-r/2) cos t

- (b+q/2) cos t - (a+r/2) sin t

and Eqs. (1) and (2), with M 0 and D - 1,

q K1B - (I+A)

q 1KB + (1-A)

2K
r K1B + (1-A) p

a B B1 _
K 2 K

Sq+ (1 -A)_r
2 KK

The diameter of the wobble circle isV ?2 -+r2.

Now, as previously stated, the pitch lag and roll offset are -a and b,

respectively, in terms of the mean position of axis 3; however, the rotor thrust

vector, in general, does not lie along axis 3. It lies (with steady state motion)

along a line perpendicular to the plane described by axis I. From the above

expression for 02 it is seen that

11 J ill



Thrust Vector B 2 2
iTch La= U -a + r/2 2 KKB + (1-A) p + 2 sin 2t (15)

Pitch LagKK1B+ IA 2

Thrust Vctor-b-q2- ARoll Obse K/ K2 +(IA)p 0 + cos 2t) (16)

Roll Offset)

2(1-A)/K 2 B/K
P K B + (1-A) sin t - p K B + (.I-A) coo t

- KIB - (I+A) + 2(1-A)/K 2(KI-B/K)
e2 p "KID + (1-A) COK t - + (1-A) s

This represents a mean lag and offset proportional to p plus a two-per-rev

wobble of the thrust vector of amplitude p/ 2 . The thrust vector precesses in

surges at angular rates oscillating between zero and 2 p.

DECAY OF CONTROL RESPONSE ERROR

In practical cases, A, B, and D are all of order unity, allowing Eqs. (15)

and (16) to be rewritten approximately as

2 - p + 2 sin 2t

ov 0 + P(0 + cos 2t)

for steady-state movement of the control axis. If the control axis movement is

suddenly arrested, the quantity *u can be thought of as a control response error,

which will decay approximately as follows (considering only the mean position of

12



the thrust vector and ignoring the two-per-rev wobble):

KK 1K

&u & constant x e 2

This provides a useful approximation within the range K < 0.5, KjK < 0.25, wherein

the wobble is sufficiently small relative to the error that the thrust vector

can approach the control axis in a more or less straight line fashion. With

KIK - 0.25, the error is reduced by about half per rotor revolution.

DISCUSSION OF NUMERICAL EXAMPLES

A digital simulation of Eqs. (1) and (2) has been coded on an HP-9836 micro-

computer, and a number of illustritive example cases have been executed. These

cases are presented in Figures 2 through 10 as graphs showing traces of the motion

of the thrust vector on the u-v plane.

13
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-0 i.3 
0.

...... ./..........

0.3

Fig. 2. Decaying control response error with behavior
near the AO m 0 stability boundary.

In this example the feedback constants KI and K are set to values where the

rotor is barely stable. The control axis was moved away from the origin and re-

turned to the origin to introduce a disturbance, and several revolutions were

allowed to elapse before the trace was started, Four revolutions of the one-

per-rev spiral decay of the thrust axis trajectory around the control axis are

shown.

S ., 14



-0.3

I I E K K I

-o.*3 0.3

0.3

U

Fig. 3. Decaying control response error with behavior
near the a -0 stability boundary.

(a) K =0.01, 1(K I - 0.025.

With the rotor at steady state and the thrust vector at the origin, the

conitrol axis ("+") was suddenly moved to u - v - 0.25. Four rotor revolutions

of response are shown. With both K and KIK very small, the response is nearly

pure (i.e., straight-line motion toward the control axis) but very slow.

15
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-0.3 T

Ri I D E K I

-0.3 0.3

0.3

Fig. 3. Decaying control response error with behavior

near the a - 0 stability boundary. (continued)

(b) K - 0.1, K1(K - 0.025.

The conditions for this example were the same as for Figure 3a, except that

K was not so small, even though KIK was the same. The initial response (first

revolution) was essentially at right angles to the desi-red direction. 
This

unwanted excursion damped quickly and the subsequent response 
was relatively pure

but slow.p 16



D E K K I
1..e0u 1.04u 1.ueu e.cu GIs 25.000

-I--~~~~~~~-Jw V -------- i- -

-0.3 0.3

0.3

U

Fig. 4. Decaying control response error with near-optimum
gain settings (K K -0.25, K :S 0.2).

(a) K -0.01.

The next several examples are similar to the preceding ones, but with gain

IP settings well into the stable range. With l(1K - 0.25, the error decays by about

IUU half in each rotor revolution (two "swoops" of the thrust vector occur per

*DN revolution; four revolutions are shown). With K < 0.2, the response is relatively

pure, i.e., excursiorns at right angles to the desired direction are relatively

small. The largest excursion occurs in the first revolution. With K 0.01,

it lies to the right. 1



E I K K I
I-ses 1.969 1.689 9.099 969 4.969

-0.3 0.3

0.3

Fig. 4. Decaying control response error with near-optimum
gain settings (K1(K 0.25, K S 0.2). (continued)

(b) K -0.0625.

with K - 0.0625, the initial excursion is still to the right but smaller.

(Actually, the very first excursion is a nearly imperceptible one to the left.)

1-8



-0. 3

R I U E K KI

-0.3 0.3

0.3

Fig. 4. Decaying control response error with near-optimum
gain settings CK 1K - 0.25, K S 0.2). (continued).

(c) K - 0. 2

With K - 0.2, the initial excursion extends far enough to the left to begin

to become slightly objectionable.

* 19



-0.3

R H B E K KI
1.88 i.688 1.888 8 e . 888 56s .5see

I�, 1 I V

-0.3 0.3

0.31

U

Fig. 5. Decaying control response error with near-optimum
K1K (0.25) but excessive K (0.5).

With excessive teetering moment feedback, there are excessive excursions

to the right and left of the desired trajectory.

20
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B I D E K KI
•~9 1@ .698 1.989 9.•98 968 4.991

SlI I ' I I I -I - I I I - I---- - . V

-0.3 0.3

0.3

U

Fig. 6. Decaying control response error with near-optimum
gain settings but reduced feather stability.

A too-low value of the feather stability coefficient A also leads to excessive

excursions to the left and right of the desired trajectory.

21
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Fl 7. Di E K wi
1. 999 .5 9 S 1. 9 9 9 9B. 9 s 96 :9 4 . 969

- .I - - - -- - - - ; I I t I I I I .- v. _

-0.3 \\0.3

0.31

Fig. 7. Decaying control response error with near-optimum

gain settings but reduced damping.

This example is the same as the one presented in Figure 4b, except that the

damping coefficient B has been halved. The response is relatively quite pure,

but the trajectory overshoots its objective slightly. This could be avoided

by reducing K1K.

22
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R B B E K KI
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Wi~th excessive gains, the response becomes erratic and jerky. In the example

shown, the error is reduced by about 80 percent in one revolution, but the flying

~' quality would be very unpleasant. If K were further increased to 0.9 or K1 were

further increased to 2.7, thus approaching the A0 - 0 stability boundary, the

response would degenerate to a spiral of initially large amplitude around the

control axis as shown in Figure 2.
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Fig. 9. Response to a steady motion of the control axis.

(a) Near-optimum gain settings.

In this example, the control axis ("÷") is moving steadily from left to

right at a rate of 0.01 times the rotor rotation rate. The thrust vector lags

behind, moving at the same average rate superimposed on a small two-per-rev

wobble as dictated, by Eqs. (15) and (16).
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Fig. 9. Response to a steady motLion of the control axis. (continued)

(b) Increased gain settings.

With increased gains, the steady state response is the same except that

the lag is reduced.

* 25



-0.3

R B D E K KI
44 t 1.666 1.666 6.666 668 4.666

4-

-0.3 0.3

0.3

u

Fig. 9. Response to a steady motion of the control axis. (continued)

(c) Reduced feather stability.

With feather stability coefficient A less than 1.0, the lag is very slightly

reduced, and the thrust vector trajectory is noticeably offset to the left of the

control axis trajectory. (With A greater than 1.0, the lag would be increasedb and the offset would be to the right.)
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Fig. 10. Response to~a steadily increasing pitching moment.

(a) A 0.5, E - 0

In this example and Figures 10b and 10c, the rotor is initially at steady

state with the control axis and thrust vector at u - UT - -0.15, v - VT - ).15.

In the course of 12 revolutions shown, the nondimensional pitching moment is

steadily increased from zero to 0.03125. (i.e., H - 0.0625 t/24/r coo 0.

With A less than 1.0, E 0, the thrust vector precesses in the positive pitch

angle direction. There is also a snail roll offset associated with the rate

of pitching moment increase* (A constant pitching moment produces a pitch angle

response but no roll offset; see Eq. (14).) With A greater than 1.0, E - 0, the

thrust vector would precess in the negative pitch angle direction. However,

as discussed in the next example, this is not physically possible.

27



-0.3

I l.uee i..eeo 1.666 .s la .ee I.II6

0.3

The effect of E > 0 is very similar to the effect of A < 1.0. The design

parameters A and E are not independent as will be seen by reviewing their defini-

tions in the Notation list and noting that the angles el and E3 are, for a rotor

with conventional aerodynamics, the same angle. Since (I3-I2)/II is always less

than unity, A - 1.0 is not attainable without E > 0; the condition EB + (1-A) - 0

necessary to prevent a positive pitch angle response to a positive pitching moment

is not attainable at all. In fact, EB + (1-A) - 1 - (13-12)/Il. This is not an

undesirable characteristic so long as (13-12)/I1 is not too much less than unity.
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It is the. necessary characteristic for airspeed stability in hover. With the

control axis held vertical, a small airspeed in any direction will cause the thrust

vector to tilt in the opposite direction, reducing the airspeed. A value too

much below unity, however, would necessitate a large horizontal tail for speed

stability at post-transition speeds (where pitching moment on the rotor decreases

with increasing speed), large control inputs for roll trim at high forward speed,

and pitch trim at transition speed.
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Fig. 10. Response to a steadily increasing pitching moment. (continued)

(c) A - 1.0, E - 0.

As expected, the only response with A - 1, E -0 is a very small positive

roll angle response to the rate of pitching moment increase.
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CONCLUSIONS

1. A very simple feedback system providing a negative teetering moment and

negative feathering moment proportional to teeter angle is sufficient to provide

the desired type of stability and control. The required levels of feedback gains

for good flying qualities appear to be easily attainable with either a circulation

control rotor or a rotor with moveable trailing edge flaps.

2. Further requirements for good flying qualities are:

a. The quantity (13-I2)/Il should be only slightly less than unity, and

b. The damping axis should be nearly coincident with principal axis 2.

Previous studies have suggested that these requirements can be met with a mass-

balancing of the rotor, which adds appreciably but not unacceptably to its weight.

A detailed design study is needed to confirm this tentative conclusion.

3. If the requirements of item 2 are met, then a rotor of Zhis type would

have the advantage of very low coupling between longitudinal and lateral stability

and control, compared to a conventional teetering or articulated rotor.

4. A rotor of this type (fully gimballed) is inherently free of vibrations

due to hub moment oscillations (except possibly very small oscillations associated

with the feedback system if a mechanical feedback actuation is employed). In

all of the steady-state/fixed-control-axis situations consiaered herein, it is

further totally free of any oscillations of the direction of the thrust vector.

Small oscillations of the thrust vector direction do occur in transient situations

and during steady-state precession of the thrust vector to a new position. Two-

per-rev oscillations of the thrust vector amplitade and the in-plane force

amplitude at high forward speed would be similar to those of any other two-bladed

rotor. All in all, the outlook for relatively low vibration levels appears to

be favorable.
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